
NASA/TM--2002-211981

Engineering Analysis Using a
Web-Based Protocol

James D. Schoeffier

Ohio Aerospace Institute, Brook Park, Ohio

Russell W. Claus

Glenn Research Center, Cleveland, Ohio

October 2002

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http:llwww.sti.nasa.gov

• E-mail your question via the Intemet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at 301-621-0134

• Telephone the NASA Access Help Desk at
301-621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA/TM--2002-211981

Engineering Analysis Using a
Web-Based Protocol

James D. Schoeffier

Ohio Aerospace Institute, Brook Park, Ohio

Russell W. Claus

Glenn Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Glenn Research Center

October 2002

Trade names or manufacturers' names are used in this report for
identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22100

Available electronically at _sa. _ov

Engineering Analysis Using a Web-Based Protocol

James D. Schoeffler

Ohio Aerospace Institute

Brook Park, Ohio 44142

Russell W. Claus

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

1. Abstract

This paper reviews the development of a web-based framework for engineering analysis.

A one-dimensional, high-speed analysis code called LAPIN was used in this study, but

the approach can be generalized to any engineering analysis tool. The web-based

framework enables users to store, retrieve and execute an engineering analysis from a

standard web-browser. We review the encapsulation of the engineering data into the

eXtensible Markup Language (XML) and various design considerations in the storage

and retrieval of application data.

2. Introduction

Most organizations seek to design and develop new products in increasingly shorter time

periods, ref. 1. At the same time, increased performance demands require a team-based

multidisciplinary design process that may span several organizations, ref. 2. One

approach to meeting these demands is to modify the traditional product design approach

by enabling rapid transfer of design information among team-members using a

combination of XML data transfers and the redesign of engineering applications. This

paper explores one such approach. We review the modification of an engineering

analysis simulation (Lapin) to allow execution over a network using web-based protocols.

This design enables users to store, retrieve and execute engineering analyses from a
standard web-browser.

Engineering analysis has traditionally involved the execution of Fortran codes by reading

input file(s) that contain initialization data (e.g. boundary conditions) for the calculation.

The results of the execution of these codes are subsequently stored in separate output

files. Sharing the results of these analyses has been problematic for both the original

engineer as well as the engineer's design team members. Initially, there had to exist

some means by which the original engineer could disseminate the results with other

design team members. The design team members may then have had to perform some

manipulation of these results (i.e. "massaging") in order to translate the data into a form

suitable for their own analyses. Failures in the two-step process of distribution and data

"massage" can occur and lead to anachronistic states in which out of date results and

design information were used in conjunction with the latest design analysis.

NASA/TM--2002-211981 1

The timely sharing of information is a major strength of the World Wide Web (WWW).

WWW protocols are designed to allow the presentation of information that can be

continuously updated. However, the file-based execution of Fortran codes does not

readily lend itself to this new approach. There is no clearly defined standard for input

and output data, thereby, making it difficult to share information between differing

computing platforms. The eXtensible Markup Language (XML) provides one

mechanism to address these problems. XML allows any data to be encapsulated in a

platform independent manner and provides a mechanism to develop a standard for input /

output data that can be shared with others. This XML data can then be passed to a web

server that executes the engineering analysis and provides an output XML stream to any

user on the network. Furthermore, these input and output streams may be stored in a

database, allowing both archival storage and retrieval of analysis data.

This paper reviews various design considerations for the conversion of engineering

applications toward a WWW-based protocol. We explore various options in the XML

encapsulation of input and output data. The design of data storage to provide high-

performance storage and retrieval is reviewed. Finally, we demonstrate web protocols for
data access and execution.

3. Lapin Application

Lapin is quasi-one-dimensional unsteady flow analysis for supersonic inlets, reference 3.

It is a Fortran application that requires an input dataset defining inlet geometry, initial

flow conditions and other numeric parameters to control the solution algorithm. These

input parameters are read by Lapin during execution and an output file is created

containing solution results. This process suggests a simple object structure as seen in

figure 1.

L_Pin i
,_HexDee'malMode i

i 0,p0, I

/

"J'_" i/// \!/_ _

B##Sda_k_yeiB!eed

Figure 1. Overall Unified Modeling Language (UML) description of Lapin simulation data.

NASA/TM--2002-211981 2

Lapinobjectsareorganizedhierarchicallysuchthattheydonotcontainclosedpathsof
objectsthatreferenceoneanother.Manyotheraerospaceapplicationsobjectsexhibita
similarhierarchicstructure,differingonlyin thenumberof sub-objectsanddepthof the
sub-trees.Thesub-objectsassociatedwith theInputobjectcontainarraysof data.All
inputarrayshavethesamemaximumsizeandall outputarraysalsohavethesame
maximumsize(butdifferentfromtheinputarrays).Thetotalcountof simpledata
membersin these7classesis 63,andthetotalcountof arraysis 62:

Class DataMembers Arrays
Lapin 7 None
Input None None
Control 16 4
Geometry 13 31
BoundaryLayerBleed 3 12
BoundaryConditions 14 4
Output 6 11

Representativenumbersfor arraysizesare20for theinputarraysand200for theoutput
arrays.The62dataarraysrepresentatotalof 1020floats(51×20)for theshortarraysand
2200(11×200)for thelongarraysor atotalof 3220floats.

4. Data Interchange Standard

Data standards are like a dictionary that provides a clear description of data semantics. In

other words, it is important that an application understands what a term like "length"

means and how it is described (e.g. units). For this report, we describe data standards that

are solely useable by a Lapin application. Input and output data values are defined for use

in the Lapin code. Of course, this is a demonstration that can be enlarged to allow

integration of multiple codes as long as a consensus data standard is developed.

For this report, input and output information are captured in an XML representation. The

representation is defined through a series of meta tags that describe any encapsulated

data, ref. 4. The design pattern of these tags is captured in a Document Type Definition

(DTD) or Extensible Stylesheet Language (XSL) document that can be used to test the

validity of any XML dataset. A valid XML dataset must follow the structure defined in

the DTD or XSL documents. Users with access to this specific DTD or XSL can parse a

valid XML representation to extract some or all of "self-documented" data.

In this report, the parsing of the XML document is done by C++ custom-programmed

applications that accessed the XML data using the Document Object Model (DOM),

ref. 5, as is more fully discussed in Section 4a. This data was then passed to a C++

wrapper that encapsulates the FORTRAN Lapin code.

NASA/TM--2002-211981 3

Thedesignof metatagsusedin XML typicallyfollowsanobjectstructuresuchasthe
oneillustratedinFigure1. However,avarietyof designdecisionsmustbemadeto
encapsulatetheobjectstructurewithinXML. Eachof thesedecisionscanaffectthesize
of theresultingXML representationof aLapinobjectandthesizeof therepresentationis
important.Largerrepresentationsareundesirablebecausetheyincreasestorageneedsand
mayincreasedatatransfertimesbetweenaclientandtheserver.

VariousXML designdecisionsinclude:

.

2.

3.

4.

Choice of the length of the name used to identify each object, or data

member in the XML string.

Representation of a data member as an XML element or as an XML
attribute.

Format for the value of a data member of type integer or float in the XML

string.

Format of the individual values of an array of floats in the XML string.

Each of these design decisions in turn affects the length of the XML string representation.

Furthermore, each decision can also affect the generality of the design in the sense of its

applicability to other objects containing numerical data grouped into sub-objects.

For the Lapin analysis used in this study, the following design choices were made:

1. The number of data member names is small. Therefore, the name length has

little impact on the overall XML string size, so the Lapin objects and the XML

string use the same name. As a consequence, there is no need to invent new

names and then map them to the actual C++ objects that are used to parse the

XML. This implies that a name extracted from the XML string can be passed as

a string to the function building the Lapin C++ object (along with the value) and

hence the function becomes non-XML specific.

2. The use of attributes or elements for specification of data members has almost

no affect on the overall XML string size. Attributes are not used because the

XML schema would require an attribute name to be created for each attribute.

For the same reason, elements specific to each data member are not used. The

result is the use of a general element (with some name such as "DM") with the use

of one attribute to contain the data member name. The type is not stored as an

attribute implying that the Lapin function which creates the XML string or

receives data from the XML string decoder must associate the name and type

from knowledge of the data member of the actual objects. This must be done

anyway for error-checking purposes. Should the need arise to store the type, an

attribute can be added without making existing XML strings obsolete.

3. The XML string representing the application data is large, so there is a trade-off

between the utility of a readily readable ascii representation and a smaller,

unreadable data representation. The use of hex digits rather than decimal digits

NASA/TM--2002-211981 4

decreases the string size very significantly and was adopted for all numeric

variables (integers and floats). Attributes of the Lapin object are used to specify

the format's numeric base, floating-point format, and byte order so that the string

can be used to build Lapin objects in other computers. It is then possible to

change numeric formats without adversely affecting much of the code for the

creation or decoding of XML strings should the circumstances dictate the need for

use of decimal digits.

A further consequence of this decision is that a text string is used for the value as

far as XML itself is concerned as opposed to an XML type such as "r4" which

knows that the value is an IEEE 801 format 4 byte float. Conversion then

becomes the responsibility of the Lapin functions creating and using the values in

the XML string.

4. Array values so dominate the XML string that all values were stored as fixed-

length hex strings. Thus, an array becomes a data member with a "single" value

which is a long string (e.g., 1600 characters for an array of 200 floats).

The Lapin object structure is shown in Figure 1 and the XML representation of

this structure is described in the following items.

1. The single outer XML element is called "Lapin". This object has three

attributes, which are global to all other XML elements. The attribute

"HexDecimalMode" determines whether the integers and floats and arrays are

specified in hex or decimal digits. Two other attributes, InputArraySize and

OutputArraySize, define the length of arrays in the input and output objects.

2. An element named "Input" is a sub-element of "Lapin". It contains sub-

elements named "class". Four such elements named "Geometry",

"BoundaryConditions", "Control", and "BoundaryLayerBleed" are the sub-

elements of "Input" object.

3. An element named "Output" is an optional sub-element of "Lapin" also. It is

optional so that a Lapin object may be created before a simulation is run and there

is no output data available. After the analysis has been run, the "Output" object

can be added to a newly generated XML string.

4. Elements corresponding to the 4 types of data elements are declared in the

schema. They are "DMI" for an integer data member, "DMB" for a boolean data

member, "DMF" for a single float data member, and "DMFA" for an array of

floats. Because an array is stored as a single string of hex or decimal digits, an

array is no different from any simple data member except for the size of the

representation. These data member elements are sub-elements of the various

Lapin objects and sub-objects containing data members.

NASA,rfM--2002-211981 5

5. Unlike some languages (e.g. the Unified Modeling Language -UML), the XML

specification does not permit the exact specification of number of sub-elements.

For example, a Lapin object has exactly 4 sub-objects. The schema specifies that

there are "1 or more Input" objects. This limitation of XML must be handled by

the Lapin object code which generates the string (it must generate exactly 4 input

objects) and the Lapin object code which decodes the XML string and generates

the Lapin C++ object (it must check that there are exactly 4 "Input" elements with

the proper names ("Geometry", etc.) before creating the Lapin C++ objects.

4a. Conversion of an XML string to a Lapin object -the parsing problem

The XML Document Object Model (DOM) was used to parse the XML representation to

provide the data values needed by the Lapin analysis (i.e. the Lapin object). C++ code

was used to both generate the XML representation of a Lapin object and for the parsing

of the XML representation to recreate the Lapin object. The design of the schema

assumed the specific Lapin class representation noted earlier. The Lapin C++ code was

structured to allow efficient coordination between the DOM object parsing of the XML

string and the use of the retrieved elements and attributes to create the Lapin object. A

helper object that paralleled the Lapin object provided efficient data structuring. The

XML helper object required a state-based control so that an element could be parsed in

depth (including sub-objects) and then the state of the parser would recognize completion

of that element and restore the state so that the next element at the higher level could be

parsed. This allowed, for example, the parser to discover that the Lapin object contained

sub-objects (Geometry, etc.), recreate those objects by interacting with the Lapin C++

classes, then continue parsing XML from the base Lapin object.

4b. Conversion of a Lapin object to an XML string

Each Lapin sub-object was designed to be able to generate XML elements and attributes

corresponding to its data members. All were generated as DOM objects. DOM objects

were connected in a tree that represented the structure of the Lapin object. The DOM

itself simply generates the XML string representation of the tree in order to create the

Lapin XML string. This is effective because of the extensive DOM error checking of the

data and structure legality via the Lapin schema (as captured in XSL).

5. Data Storage and Retrieval Design

Each XML dataset is intended to represent a single Lapin calculation with the Input and

Output data fields. This XML data can be stored in two different locations. On the server,

a SQL database was used to store the Lapin XML representations. A client browser can

query the database and perform a search based on user-defined characteristics, but the

data is stored on the server. On the client, XML strings can be stored in an Excel

spreadsheet as detailed in Section 5.3.

XML is used as the "linga franca" or common data language to store the Lapin

simulation data. Each external application that uses this information must transform

NASA/TM--2002-211981 6

between XML to the application-specific data format. XML is used as an intermediary to

avoid the need for direct translations from one application to another. The direct

translation approach would require N*N custom translators, whereas the use of XML as

an intermediary reduces this need to 2N.

Experiments run from the design discussed in this paper found that parsing an XML

string and creating the C++ Lapin object in memory takes approximately 125

milliseconds on a 300MHz Pentium. Creating an XML string from a C++ object in

memory takes approximately 180 milliseconds.

5.1 SQL Database Storage Considerations

A database representation is important for two reasons: persistence of specific objects

over a long time period and interactive examination and retrieval of objects. The

examination and retrieval of objects requires a retrieval language that can search the

database for objects satisfying specific criteria. Relational databases provide a standard

language, Structured Query language (SQL), that allows retrieval based upon (possibly)

complex boolean relationships involving the contents of as many data fields as desired.

The downside of this is the need to store all the data fields of all sub-objects of the

hierarchical object in tables in the database.

Representation of an object in a relational database is usually done by creating one table

in the database for every different class of object and providing one field for each data

member of that object-class. All instances of objects of that class then appear as a table

with one row per object-instance and each column representing the values of a given data

member of the class for each object instance. There are several complications however

as discussed in the following sections.

5.1.1 Representation of object key data as fields in tables

If individual sub-objects objects of a given hierarchical object are stored in separate

tables, it must be possible to determine for each object in each table the given base object

it is part of. This requires that a unique identifier or key be created for each base object

and stored as a field in each sub-object-table. To make the key readable by a user, a text

key was used in the test implementation. The key identified the creator of the object, the

date and time created, and a project name. Since the key must be stored in each table, it

would be desirable to have a shorter key but then would not allow a user viewing a sub-

object-table to associate each row with a specific base object.

5.1.2 Representation of array data as database "blobs"

A "blob" in database terms is simply an arbitrarily-sized data item whose internal
structure and data values are not known to the database software itself. The name comes

from the description "binary large objects". A blob is stored and retrieved as a unit and

may not be involved in a query. That is, a query may not refer to a value in a Blob to be

NASA/TM--2002-211981 7

used in selecting which items are retrieved. The blob element in a database table is

actually a pointer to the arbitrarily-sized data somewhere else in the database.

It would be possible to create a "blob" for each array in the object associated with the

table. The corresponding column name could be the name of the array in the object. This

results in a simple database design whose tables contain all the data for a sub-object in

one row. Alternatively, the database could be designed with a single "blob" containing all

62 arrays in one field of the base-object table. Either of these alternatives could be used

for retrieving array data and building the corresponding Lapin objects.

Neither alternative allows the use of array data in database queries nor does it allow the

user of the database to browse the database examining object data for the purpose of

deciding which objects to retrieve. The power of a relational database lies in its SQL

query capability. Hence these alternatives were not considered further since full query

capability involving data contained in input and output arrays is necessary. However

great advantage can be taken of a blob-field as discussed in the next section.

5.1.3 Representation of array data in array-size specific tables

Five of the six Lapin objects contain data arrays. SQL Server table columns must contain

a single named value. This implies that storing that data in the table would be roughly

equivalent to using separate data members for each element of each array. Since table

columns must be named, this requires the creation of a unique name for each array

element (e.g., the array name followed by its index). This approach results in tables with

many columns which is not itself a problem. However using the artificial column names

in a query makes queries involving these data items awkward to create.

Alternatively, each of the arrays would have to be treated as a separate object and stored

in a separate table. This leads to excessive time to access the database while storing and

retrieving an object.

An alternative appropriate to objects commonly used for aerospace simulations takes

advantage of the assumption that all input arrays commonly have the same maximum size

and all output arrays also have the same maximum size. The two sizes are quite different

however. In this alternative, array data is stored separate from the objects that contain the

data. Two additional tables are used, one for input data-arrays and one for output data-

arrays. One row of a table represents one array. Each table must have a column which

contains a key identifying the simulation object to which the array belongs and another

column identifying the name of the array. These tables are quite manageable. For the

common maximum sizes of 20 for input arrays and 200 for output arrays, the tables

contain 22 and 202 columns respectively. Column names can then conveniently be the

index value of the array element.

NASA/TM--2002-211981 8

5.1.4 Embedding the XML string in a table

Since the fundamental representation of an object is an XML string, it is possible to avoid

retrieving sub-objects provided that the XML string representing the object is itself stored

in the base object table. This was done in this representation for the purpose of providing

a much faster retrieval of objects from the database since only the single XML string

field must be retrieved because the entire object including sub-objects and arrays can be
created from it.

This approach allows queries to be as complex and complete as desired, but retrieval

remains simple because only one (long) string-field is retrieved. The alternative,

retrieving the data members of each object from its corresponding table, and then creating

the object in memory by storing the retrieved data values into the hierarchy of objects

would do the same thing. However, the XML string would then have to be generated

from the newly created object in memory. The retrieval of many fields from many tables,

finding the rows associated with a given object, and constructing the object that way is a

much more complex software task that significantly lengthens retrieval-time.

In practice, not all sub-objects are usually involved in the queries. In this case, it is not

actually necessary even to store those non-involved sub-objects in the database since the

XML string in the base object table is sufficient for complete recovery of the object.

The implementation discussed in this paper required 1 table per object and two tables for

the input and output arrays with the XML string stored in the base object table for a total

of 8 tables. The 6 sub-object tables contain 1 row per Lapin object. The input data array

contains 51 rows for each Lapin object and the output array 11 rows per Lapin object.

5.2 Performance of the transformations between XML strings and the relational
database

Two experiments were created for the purpose of getting insight into the performance of

the database portion of the transformation between representations.

1. Create a new empty database in which a user-selected number of objects are

created and stored in the database. Each object is stored in a row of multiple

tables, one per sub-object but with all arrays stored in one of two tables as

discussed above. The experiment allowed the option of storing the input and

output data vectors in order to determine the effect of the array-storage choice on

the response time.

2. Open an existing database created in the first experiment, retrieve a subset of

the stored data, and build the corresponding Lapin objects from the retrieved data.

Standard SQL queries are used. The result of a query is an array of pointers to the

retrieved simulation objects.

NASA/TM--2002-211981 9

The cost of retrieving all the data for the sub-objects including the array data directly

from the database varies from 2 to 4 seconds per object. This time includes retrieving the

data from 6 tables plus separate queries to the array storage tables to retrieve each of the

62 arrays, a total of 68 separate SQL server queries per object. This is a very inefficient

way to use a relational database.

Better design of the queries could significantly reduce the above retrieval times at the

cost of more complex transformation software helpers. However, the use of the stored

XML string to allow completely general queries with simple retrievals is so superior to

the direct retrieval of sub-object data that it is not worth considering. Parsing is faster

than querying.

The following table shows the storage and retrieval times for various number of Lapin

objects where the result of the general retrieval query actually retrieves only the XML

string. It does not include the time required to construct the Lapin object from the XML

string (this time is discussed below).

Number of

Simulation Objects
Storage Time

(seconds)

Retrieval Time Retrieval Time

(seconds) Per Object (secs)

1 2.7 0.69 0.690
5 3.8 0.76 0.153

25 14.1 1.63 0.065
50 24.9 2.66 0.043

75 37.7 3.61 0.048
100 49.3 4.82 0.048

Notice that storage time for an object includes the time to store all the data members of

the six objects and the XML string in six tables and to store the 62 arrays in the two array

tables and is approximately 0.5 seconds per Lapin object when multiple objects are stored

and around 1 to 3 seconds for a single object. The long times for storage of a single

object is due to SQL server's caching of internal data in anticipation of further queries of

a similar nature. Repeated single object queries then become faster.

Retrieval time varies from 69 milliseconds for 1 object to around 48 milliseconds per

object when many objects are retrieved. Thus retrieval is generally 10 times faster than

storage because of the retrieval of the XML string. Despite the size of the XML string

(around 31,000 bytes in these examples) the fast retrieval time is well worth the cost.

If the data arrays did not have to be stored in the database for querying purposes, the

storage time reduces considerably. A repeat of the above storage and retrieval

experiments in the case data arrays (both input and output) are not stored in the data base

yields the following results:

NASA/TM--2002-211981 10

Number of

Simulation Objects
Storage Time

(seconds)

Retrieval Time Retrieval Time

(seconds) Per Object (secs)

1 1.52 0.62 0.615

5 1.74 1.16 0.233
25 2.63 1.74 0.070
50 5.49 2.85 0.057
75 7.76 3.95 0.053

100 9.41 4.55 0.046

Retrieval times are about the same as expected since only the XML string is actually

retrieved. However storage times drop from the 2-4 second range to the 0.9-1.5 second

range, a decrease of 2 times for a single object to a decrease of 5 times for multiple

objects.

Since object creation from an XML string is approximately 125 milliseconds, the total

time to retrieve an object from the SQL server database and construct the corresponding

object in memory ranges from 170 milliseconds to 775 milliseconds per object.

5.3 Performance of the transformations between XML strings and Excel

spreadsheets

The Excel spreadsheet representation includes a worksheet for each sub-object that

contains the names and values of all data members as well as the array data members

formatted in a readable fashion. In addition, the XML string itself is embedded into a

hidden cell on the worksheet corresponding to the base object.

The transformation from an XML string to an Excel spreadsheet takes about 4 seconds to

load the Excel program and 25 seconds to parse the XML string and write the comment

and data cells into the spreadsheet. The actual workbook contains 6 separate sheets that

must be created, with a total of 3754 separate entries that have to be written to cells. The

elapsed time includes parsing the XML string, creating the pages, determining the

location on the sheet to write the next cell, and actually writing the cell. This includes all

data members and their names as comments, all arrays including their names and a

column of index values, the embedded XML string in a hidden cell, and the creation of

the 6 spreadsheets to hold the above data from the sub-objects. During the writing, the

spreadsheet is set to the non-update mode so that it does not attempt to redraw itself each

time a cell is changed.

The 25 seconds of elapsed time corresponds to an average write time per cell of 6.7

milliseconds for each of the 3754 cells. Considering that the program creating the

spreadsheet is in a separate process from the Excel process and that an automation

interface to Excel is being used, a multi-millisecond write time is usual. Note that this

corresponds to a write rate of 150 cells per second. The 3754 cells actually consist of 120

cells corresponding to titles, descriptions, and data of simple data members of each of the

NASA/TM--2002-211981 11

Lapin objects, 1210 cells for the input arrays' descriptions and data, and 2424 cells for the

output arrays' descriptions and data. Hence the writing time of Lapin data without arrays

takes about 1 second, the input arrays about 8 seconds, and the large output array data

about 16 seconds. These times were calculated from the average cell write time and were

not directly measured.

After a user change to the spreadsheet, the transformation from the spreadsheet to a new

XML string takes 15 seconds. This is faster because cells are read but not written except

for the embedded XML string that is changed to the new XML string representing the

data actually present in the Excel spreadsheet. Only cells containing data (not

descriptions) are read and these represent half of the 3754 cells. Note, that the elapsed

update time for half of the cells is 20% more than half of the elapsed write time for all the

cells. Hence, the Excel read time per cell is approximately the same as the write time per
cell.

Currently the Excel spreadsheet program is opened and no sheet is displayed until all 6

sheets have been created and written. This leaves the user staring at a blank sheet. The

apparent (but not actual) speed of the XML string to Excel spreadsheet representation

could be improved by about 5 to 1 if the base object worksheet were written first and then

displayed to the user while the other 5 sheets were being written in the background.

6. Web Protocols for Data Access and Execution

The process of encapsulating input and output data for a Lapin analysis calculation has

been reviewed in the previous sections. This section discusses how these XML strings are

used in a web-based environment. Merely capturing the input and output data in a

structured format is a first step in this process. The next step involves designing the

client/server interactions that clearly specify how these XML strings are used in the

execution of the Lapin application.

Figure 2 displays a conceptual picture of the client/server approach used in this study. In

a general sense, the client provides Lapin input data (in the form of XML strings) to the

server. The server parses the input data and controls the execution of the Lapin

application. Then the server provides an XML string that encapsulates the Lapin output

data to the client. The exact details of the interaction are described in the following
sections.

NASA/TM--2002-211981 12

Server

-Lapin Execution

-SQL Database

-Web Server

Client

-Web Browser

-Excel Spreadsheet

Figure 2. Client/Server interactions for the Lapin application.

6.1 The Lapin Web application and the design of its active-server pages

The interaction with a user of the application starts with the user navigating to the server

site and the LapinWebApp.asp page using a standard browser (Internet Explorer or

Netscape Navigator). The execution of this page causes an Hyper Text Markup Language

(HTML) page to be sent to the user and displayed in the user's browser. The page

displays a form showing the state of the application (e.g., whether or not a lapin object

has been accessed) and the user's options (e.g., display a lapin object in an excel

spreadsheet). This is illustrated in Figure 3. The response of the user causes either a local

command or a remote command to be generated. A local command is one that is handled

entirely on the client computer whereas a remote command is one that is transmitted to

the remote server for handling.

NASA/TM--2002-211981 13

iii !iii!iii iiiiiiiiiii iiiiii!iiii iiii iiiiii iiiiiTiii iiiiiii i iiiiiiii iiiiiii iii iii iiii iiii iiiii iiiii ii
_i_iiiI_!_i_i_!_i:_ii;_i)_;771

Figure 3. A view of the client browser screen upon initial contact with the server.

Local commands must be supported by application code on the user's machine. Examples

in this application are the following:

.

2.

3.

4.

Read an XML string encoding a lapin object from a local file.

Write the current lapin object XML string to a local file.

Display the current lapin object in an Excel spreadsheet.

Retrieve a lapin object from data in an Excel spreadsheet.

All of these local commands are most efficiently processed on the user's client

workstation. The local lapin objects allow changes to values in a local spreadsheet that

may be submitted for another run of the Lapin code.

Remote commands are supported at remote server machines (one or more) so that it is not

necessary for a user to have complex applications installed on the user's local machine.

Examples of remote applications are the following:

.

.

3.

4.

Read the keys of lapin objects stored in a database (SQL server). [As was

described in Section 5.1.1, the key describes: the creator of the object, the

date and time created, and a project name.]

Retrieve the lapin object from a key retrieved from the database.

Store the current lapin object into the SQL server database.

Transmit the current lapin object's XML string description to the server

where the Lapin application code resides and run the analysis code.

The database commands are more naturally remote commands so that results of lapin

object analysis runs can be centrally stored for retrieval and examination by many users.

NASA/TM--2002-211981 14

Similarly, the analysis code often must reside on a secure server and therefore is not
available to install on each user's machine.

In all cases of both local and remote commands, an HTML page is returned to the user

with application state and options set to those currently meaningful. Figure 4 shows the

returned HTML page after executing the remote command that accesses the SQL Server

database and returns an XML string containing the keys of all lapin objects currently

stored in the database. The user could select one of these keys and execute another

remote command to return the corresponding lapin object in the form of an XML string.

_i____iii_iii#iiii_ii

Figure 4 HTML page displaying typical results from a user request.

6.1.1 Handling of the User Interface "Submit" button

Figure 3 shows the appearance of the initial HTML page displayed so that the user may
enter data and select a command for execution. After the user has entered whatever data

is needed for a command (e.g., a file name and path) and selected the checkbox

corresponding to the command to be processed (e.g., "retrieve XML from a file"), the

following sequence of actions take place.

NASA/TM--2002-211981 15

For each of the checkboxes displayed on the form in sequence

if the checkbox is checked (selected)

call the corresponding action subroutine
in the case of a local command, the action subroutine

processes the command whereas in the case of

a remote command, it calls ProcessXMLCommand

to navigate to a remote ASP page to process
the command.

write the hidden variable values to the form

the values of the variables are copied into the form variables

that are in turn used in the generation of the returned ASP page.

actually submit the form for processing

Once submitted, an ASP response page is generated and displayed. The checkboxes are

actually radio buttons so that only one may be clicked at any time. Clicking a second

automatically unselects the first.

6.1.2 The round-trip from user data entry through receipt of the response of a
command

The user interacts with a dialog displayed within the user's browser. The user has the

option of entering data (e.g., a file name where a lapin object is located), browsing to the

file location to pick from a list of files, and even editing information displayed in data-

entry areas on the form. The user makes his/her choice of command from a set of radio-

buttons each describing an available command, and clicks the 'submit' button to initiate
the command.

The response to the submit button click determines whether the command is local (and if

so carries it out locally). Local commands may use ActiveX controls but these must be

available on the local machine. For example, file read and write controls are available

through standard operating systems such as Windows and are used to read and write files

of interest to the user on the local machine. Controls for generating and parsing XML

strings also are standard under Windows. The implementation here used custom ActiveX

controls for converting Lapin objects to XML data and for displaying Lapin objects in

Excel spreadsheets and retrieving modified data from an Excel spreadsheet.

If the command is remote, the following sequence of actions take place.

. An XML command string is generated that encodes the desired command

and all the data needed to carry out the command. For example, the

command to run the Lapin analysis program requires specification of input

data. All of this data is stored in individual objects within a

C++ Lapin object that is not suitable for transmission to a remote server.

NASA/TM--2002-211981 16

.

3.

.

.

.

.

8.

9

10.

11.

12.

13.

Hence an XML string is generated from the Lapin object and this

represents the input data. In the current application, this string is

approximately 30,000 bytes in length and is a complete XML string.

It is embedded into the command XML string as a single data item

using the XML CData code. This causes an XML processor to read

the entire string as data (and ignore its XML tags embedded in that data).

The XML command string is sent as data to the remote server where it is

translated by an Active-Server Page (ASP), ref. 6.

A Visual Basic script parses the components of the command string. These

components are the command name, and each parameter needed by the

command. In the case of the command to run the Lapin analysis code, the

name is "RunLapinF" and only a single parameter is supplied, the entire

Lapin XML string. The XML string appears to be a single data item in the

command string because of the use of the CDATA tag.

An ActiveX object appropriate to the particular command is created by

Visual Basic scripts in the ASP page and a method (member function) of

that object called passing the parameter data extracted from the command

string.

The specific ActiveX object generally extracts the individual data items

from the arguments passed to the function and prepares the data for the

actual carrying out of the command. In the case of the RunLapinF

command, the parameter is an XML string that encapsulates a large

amount of data needed by the lapin analysis code. The XML string

is processed by the XML processor, a Lapin object is created, and all

the encapsulated data is used to initialize the lapin object and its 4 sub-

objects. The C++ Lapin object is then used to move the data into the

appropriate variables used by the Lapin analysis code. This is Fortran

code and all of its input data is stored in a large block data statement.

The Lapin analysis code is started and it simply reads data from its block

data variables and executes to produce output data also in variables in its
block data area.

The output data is then packed into arrays and variables within the C++

Lapin output sub-object.

The updated lapin object then generates a new lapin XML string that

contains not only the original input data, but also the newly generated

output data.

A response XML string is then generated. It includes tagged error

information and the CDATA-tagged updated Lapin XML string.

The response string is returned to the ASP page that generated

the command and its components extracted.

If the error information component indicates a failure, an error message

is generated to be returned to the user.

If the error information component indicates success, the Lapin XML

string is extracted and stored in a variable to be returned to the user.

An HTML page updated according to the new state and including the

command response returned to the user.

NASA/TM--2002-211981 17

6.2 Key aspect of the design: maintenance of the state of the application

Web applications pass HTML and ASP web pages back and forth between the user at the

local machine and the server machines where remote applications are run. Web

applications are intrinsically state-independent in that there is no automatic maintenance

of global data from one page to another. However it is almost always necessary to pass

data from the one page to the other and to return data from a remote machine. In addition

to data, state information must be passed along with data specific to a command and also

returned with the command response. This permits maintenance of the state of the

application between interactions. For example, initially, there is no current lapin object so

the user's options are few. Later on, there may be a current lapin object and hence the

user's options are different. In this design, a set of variables that determine the state of the

application are maintained on the HTML pages as values of form variables that are

transmitted to the server, updated there, and returned on the new HTML page sent back

to the user. These form variables are invisible to the user but used by the page to

determine how to proceed. For example, the HTML page returned to the user from a

remote server contains script (commands) that check the values of the hidden variables to

determine exactly what information should be displayed to the user for the current state

of the application. The result is that the user sees a state-dependent display that changes

after each command selected by the user.

6.3 The XML Command specification

The command sent from the user to a remote server has the following specification:
<XML version=" 1.0">

<LapinCommand>
<CommandName>name</CommandName>

<Parameterl > data </Parameterl >

<Parametern> data </Parametern>

</LapinCommand>

For example, the command to store a Lapin object into the SQL database must pass the

XML string as a parameter. The command is:

"<lapin_command>"
"<XMLstringToDB>"

"<lapin_xml_strin g>"
"<![CDATA[" & LapinXMLString & "]]>" _

"</lapin_xm I_string>"
"</XMLstringTo DB>"

"</lapin_command>"

The parameter, 'lapin_xml_string' is actually a string of length 30K bytes. It is treated as

the value of a single tag by enclosing it in the CDATA form shown. Only one parameter
is used with this command.

NASA/TM--2002-211981 18

Once the server ASP page is activated, it extracts the XML command string, parses it and

checks that it is a command by looking for the "LapinCommand" tag. It then extracts the

value of the "CommandName" tag and processes the command using a Visual Basic

script specific to the particular command. That script understands the number and types

of parameter data that must be present, extracts those parameters, error checks the

parameter data, and then creates the appropriate ActiveX control and passes the data to

the control by calling a method on its interface. The ActiveX control returns command-

specific data through the output variables of the interface methods or error data in case of

failure of the command.

The following script shows how the data received from the user is processed and the

XML parsed and checked:

'Create XMLDOM object, and load XML data from client
Set docReceived = CreateObject("Microsoft.XMLDOM")
docReceived.load(Request)

set RootNode = docReceived.documentElement
' RootNode is the root element of a tree

' containing the XML received in the form of a DOM tree
' Test for the kind of tree (node type) and use that
' and the XML tree to get the data to be handled.
receivedXML = docReceived.xml

Dim RootNodeName 'the name of the message
RootNodeName = RootNode.nodeName

' test for message type from client
If NOT RootNodeName="lapin_command" then

ReturnXMLerror RootNodeName, "illegal lapin command"
End If

The lapin command is processed differently for each supported command. The command

to store a Lapin object into the SQL database is processed as follows:

elseif commandNodeName = "XMLstringToDB" then
'parameter1 is the xml-string
Set parameter1 =

com mandNode.selectSingleNode("//lapin_xml_string")
if (err.number<>0) then

ReturnXMLerror "601 "," Command 'XMLstringToDB' is
missing parameter 'lapin_xml_string' "

end if

parameterlValue = parameter1 .firstChild.text

xml_result = LinkXMLobj.LapinXMLtoSQL(parameterlValue)
if (err.number <> 0) then

ReturnXMLerror "620", " Command 'XMLstringToDB' failed
for key '" & parameterlValue & & err.number & &
err.description

else

ReturnXMLsuccess(xml_result)

NASA/TM--2002-211981 19

NotethattheActiveXobjectusedto handlethiscommandis 'LinkXMLobj' andthe
particularmethodcalledis 'LapinXMLtoSQL.Thisexampleshowshowthedatareturned
is changedintoanXML stringby scriptingfunctions.

ThescriptthatcalledtheActiveXcontrol'smethodunderstandstheargumentsreturned
butmustthenchangethatdataintoaresponseXML string.Thescriptingfunctionsare:

Sub ReturnXMLerror(ErrorLabelString, errorMessage)
On Error Resume Next

Set LinkXMLobj = Nothing
responseXML = "<?xml version='1.0'?><lapin_command_response>" &_

"<errorcode>" & "<![CDATA[" & ErrorLabelString & "]]>" & "</errorcode>" &_
"<errormessage>" & "<![CDATA[" & errorMessage & "]]>" & "</errormessage>" &_
"</lapin_command_response>"

if err.number <> 0 then

Response.End
end if

Response.Write responseXML
Response.End

End Sub

sub ReturnXMLsuccess(xml_result)
On Error Resume Next

Set LinkXMLobj = Nothing
responseXML = "<?xml version='1.0'?>" & _
"<lapin_command_response>" &_
"<errorcode>No Error</errorcode>" &_
"<XMLdata>" & "<![CDATA[" & xml_result & "]]>" & "</XMLdata>" &_
"</lapin_command_response>"

if err.number <> 0 then

Response.End
end if

Response.Write responseXML

Response.End
Exit Sub

End Sub

Notice that the return XML string is generated by simply concatenating strings containing

the various XML tags and the data. Note that the success return function again returns the

XML string of the Lapin object encapsulated in the CDATA statement.

6.4 List of functions for client-side processing

The client ASP page (LapinWebApp.asp) uses several functions for error detection and

utility purposes.

A function used for error tracing is: "ExtractLeadingXML." This function searches for

the XML tag 'lapin_command_response' and extracts an XML string from the CDATA

NASA/TM--2002-211981 20

statement associated with this tag. This XML string must be embedded within a CDATA

statement since an XML string is not a legal entity within another XML string. Both the

response XML string (that comes from the server) and the embedded XML string can

then be checked for legality.

"CheckXMLresponse" takes an XML response string and checks its XML format. It is

used simply for error detection.

"CheckXMLparses" function does the actual XML legality check by making sure that the

XML string may be parsed. A complete Document-Object-Model tree is created as part

of the legality checking.

7. Summary

This paper has reviewed various design considerations for the conversion of an

engineering application (Lapin) toward a WWW based protocol. The conversion of a

Fortran code to allow web execution and data storage was found to be practical in

concept and in practice. The use of XML for the encapsulation of input and output data

was efficient and facilitated software development.

The design of data storage was critical to provide high-performance storage and retrieval.

Data retrieval times could vary as much as a factor of five depending on how the data

storage is configured. To achieve good data retrieval performance, only a few "high-

level" or meta-data members were used for querying through the database. Array data

values (the majority of the information) were stored in "blobs" that were keyed to the

appropriate meta-data.

The use of a Lapin XML string as a common data source for all applications was efficient

and minimized the number of custom data translators that were created. Experiments run

from the design discussed in this paper found that parsing an XML string and creating the

C++ Lapin object in memory takes approximately 125 milliseconds on a 300MHz

Pentium computer.

8. Conclusion

Conversion of a Fortran-based engineering analysis (Lapin) into web-based analysis

server has been demonstrated. Using XML to define application specific data allowed a

unified representation that eased the process of transferring data between various

applications. This was demonstrated by storage in a searchable SQL database and Excel

spreadsheet. In the future, the XML encapsulated definitions could be used to allow

so-called, "Smart" agents (or applications) to find needed information for a large scale

simulations such as the Numerical Propulsion System Simulator, reference 7.

NASA/TM--2002-211981 21

References

1. Smith, Preston, and Reinertsen, Donald G., "Developing Products in Half The

Time," International Thomson Publishing, Inc., 1995.

2. Schrage, D.P., Gordon, M., "Management Issues and Techniques in Concurrent

Engineering," AIAA 92-4206, August, 1992.
3. Varner, V.O, Martindale, W.R., Phares, W.J., Kneile, K.R., and Adams, J.C.,

"Large Perturbation Flow Field Analysis and Simulation For Supersonic Inlets,"

NASA CR-174676, September 1984.
4. Homer, A., "XML IES", Wrox Press Ltd, 1999.

5. http://www.w3.org/DOM/

6. Powers, Shelley, "Developing ASP Components," O'Reilly and Associates,
March 2001.

7. Claus, R.W., Evans, A.L., Lytle, J.K., and Nichols, L.D., "Numerical Propulsion

System Simulation," Computing Systems in Engineering, Vol. 2, No. 4,

pp. 357-364, 1991.

NASA/TM--2002-211981 22

Form ApprovedREPORT DOCUMENTATION PAGE
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintainingthe data needed, and completing and reviewingthe collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 2002 Technical Memorandum

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Engineering Analysis Using a Web-Based Protocol

6. AUTHOR(S)

James D. Schoeffler and Russell W. Claus

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

DlJ-704-40-13-00

8. PERFORMING ORGANIZATION
REPORT NUMBER

E- 13651

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM--2002-211981

11. SUPPLEMENTARY NOTES

James D. Schoeffler, Ohio Aerospace Institute, 22800 Cedar Point Road, Brook Park, Ohio 44142; Russell W. Claus,

NASA Glenn Research Center. Responsible person, Russell W. Claus, organization code 5880, 216-433-5869.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category: 61 Distribution: Nonstandard

Available electronically at bttp://gltrs.grc.na.sa.gov

This publication is available from the NASA Center for AeroSpace Information, 301-621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper reviews the development of a web-based framework for engineering analysis. A one-dimensional, high-speed

analysis code called LAPIN was used in this study, but the approach can be generalized to any engineering analysis tool.

The web-based framework enables users to store, retrieve, and execute an engineering analysis from a standard

web-browser. We review the encapsulation of the engineering data into the eXtensible Markup Language (XML) and

various design considerations in the storage and retrieval of application data.

14. SUBJECT TERMS

Software engineering; Object-oriented programming; Mechanical engineering

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

28
16. PRICE CODE

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

